If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 35x + -44 = 0 Reorder the terms: -44 + 35x + 3x2 = 0 Solving -44 + 35x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -14.66666667 + 11.66666667x + x2 = 0 Move the constant term to the right: Add '14.66666667' to each side of the equation. -14.66666667 + 11.66666667x + 14.66666667 + x2 = 0 + 14.66666667 Reorder the terms: -14.66666667 + 14.66666667 + 11.66666667x + x2 = 0 + 14.66666667 Combine like terms: -14.66666667 + 14.66666667 = 0.00000000 0.00000000 + 11.66666667x + x2 = 0 + 14.66666667 11.66666667x + x2 = 0 + 14.66666667 Combine like terms: 0 + 14.66666667 = 14.66666667 11.66666667x + x2 = 14.66666667 The x term is 11.66666667x. Take half its coefficient (5.833333335). Square it (34.02777780) and add it to both sides. Add '34.02777780' to each side of the equation. 11.66666667x + 34.02777780 + x2 = 14.66666667 + 34.02777780 Reorder the terms: 34.02777780 + 11.66666667x + x2 = 14.66666667 + 34.02777780 Combine like terms: 14.66666667 + 34.02777780 = 48.69444447 34.02777780 + 11.66666667x + x2 = 48.69444447 Factor a perfect square on the left side: (x + 5.833333335)(x + 5.833333335) = 48.69444447 Calculate the square root of the right side: 6.978140474 Break this problem into two subproblems by setting (x + 5.833333335) equal to 6.978140474 and -6.978140474.Subproblem 1
x + 5.833333335 = 6.978140474 Simplifying x + 5.833333335 = 6.978140474 Reorder the terms: 5.833333335 + x = 6.978140474 Solving 5.833333335 + x = 6.978140474 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = 6.978140474 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = 6.978140474 + -5.833333335 x = 6.978140474 + -5.833333335 Combine like terms: 6.978140474 + -5.833333335 = 1.144807139 x = 1.144807139 Simplifying x = 1.144807139Subproblem 2
x + 5.833333335 = -6.978140474 Simplifying x + 5.833333335 = -6.978140474 Reorder the terms: 5.833333335 + x = -6.978140474 Solving 5.833333335 + x = -6.978140474 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = -6.978140474 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = -6.978140474 + -5.833333335 x = -6.978140474 + -5.833333335 Combine like terms: -6.978140474 + -5.833333335 = -12.811473809 x = -12.811473809 Simplifying x = -12.811473809Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.144807139, -12.811473809}
| 4-9a=-14 | | log[1/4](x)=-(1/2) | | 12n-2=5n-7 | | log[1/2](x)=-(1/2) | | 453.6672=2(3.14)r^2+2(3.14)r(13) | | 2x+12=-20-4x | | 4(2b-1)=84 | | M+25.35= | | 8-3y=-4y | | cos(t)+sin(t)=0 | | (5x+3x)x=156 | | 75x-12=12-10x | | 2x(-7)+14= | | 2.6x-1.4+x-4.5= | | 2/-16= | | 9x^2-34x-204=0 | | 153+206+x=(3)190 | | ln(x^2-1)=ln(4*x-4) | | 2y+9=8t+21 | | A=h(B+b)forb | | 2y+9=8t*21 | | f(x+7)=x^2+8x-9 | | Solve(4x-3)=148 | | M+11=x | | y=2x^4-x-2 | | 4+9+7=303 | | r=8(b+a) | | 14=2(2x+5) | | -7m=-8m+7 | | 5x+15-4x=-3-12 | | 5+6+7=223 | | 5+6+3=228 |